Résolution exacte de problèmes NP-difficiles Lecture 4: More algorithmic techniques

25 January, 2021 Lecturer: Eunjung Kim

1 Randomized algorithm continues

1.1 Random separation

Another useful technique for designing a randomized algorithm is a random separation technique. Like color-coding, it is useful to design an algorithm to detect a small-sized substructure in a graph.

We exemplify this technique with the problem Subgraph Isomorphism: given an input graph G and a pattern graph H on k vertices, the task is to find a copy of H in G or correctly decide that G does not have H as a subgraph. We take the parameter $k+d$, where d is the maximum degree of G and present a randomized algorithm that runs in time $2^{d k+O(k \log k)} \cdot n^{O(1)}$ which detect H as a subgraph in G with high probability, if exists one ${ }^{1}$.

The intuitive idea is to color the edges of G in blue or red so that the edges of H are 'isolate' in this coloring, and thus this isolated copy of H is easy to detect. Fix a subgraph \tilde{H} of G which is isomorphic to H. A coloring $c: V(G) \rightarrow\{$ red, blue $\}$ is successful if the next two conditions are satisfied:

1. all edges of \tilde{H} is colored blue, and
2. all edges of $E(G) \backslash E(\tilde{H})$ incident with a vertex of $V(\tilde{H})$ is colored blue.

On how many edges does a successful coloring requests a specific color? All edges incident with a vertex of \tilde{H} are requested to be either blue or red, depending on whether it belongs to $E(\tilde{H})$ or not. As there are at most $d \cdot V(\tilde{H})=d k$ such edges, a random coloring c is successful with probability at least $2^{-d k}$.

Now assume that the current coloring c is successful. Consider the subgraph G^{\prime} of G consisting of the blue edges. Let us call a connected component in G^{\prime} a blue component, and let \mathcal{B} be the set of all blue components. Now we have narrow down which part of G we need to match H. To begin with, any blue component having more than k vertices has no chance of being \tilde{H} (under a successful coloring).

[^0]Let H_{1}, \ldots, H_{p} be the connected components of H (possibly $p=1$). We make a bipartite graph W in which one part of the vertex bipartition is $\mathcal{H}=\left\{H_{1}, \ldots, H_{p}\right\}$ and the other part is \mathcal{B}, the set of all blue components. The bipartite graph W has an edge between $H \in \mathcal{H}$ and $B \in \mathcal{B}$ if H is isomorphic to B. As the isomorphism between H and B (on at most k vertices each) can be tested in time $k!\cdot k^{O(1)}=2^{O(k \log k)}$, the construction of W can be done in time $2^{O(k \log k)} \cdot n$. It remains to observe that if \tilde{H} exists and the current color is successful for \tilde{H}, this copy must be a disjoint union of p blue components each of which is isomorphic to H_{1}, \ldots, H_{p} respectively. We can decide whether such p blue components exist by examining whether a maximum matching on W exists saturating all vertices in \mathcal{H}. The latter problem is polynomial-time solvable.

To summarize, if G contains a copy of H (say \tilde{H}), then with probability at least $2^{-d k}$ a random coloring is successful for \tilde{H}. Given a successful coloring, \tilde{H} can be correctly retrieved from G in time $2^{O(k \log k)} \cdot n^{O(1)}$. Let us call this procedure \mathcal{A}. The probability ${ }^{2}$ that no copy of H is detected after $2^{d k}$ repetitions of \mathcal{A} while G contains a copy of H is at most

$$
\left(1-2^{-d k}\right)^{2^{d k}}=\left(1-2^{-d k}\right)^{\left(-2^{d k}\right) \cdot(-1)} \approx e^{-1}
$$

that is, with constant probability a copy of H is detected after $2^{d k}$ runs of \mathcal{A}. This constant success probability can be boosted to an arbitrarily high constant probability by repetitions.

1.2 Derandomization

The randomization technique of color-coding and random separation can be derandomized. For derandomizing color-coding, we use a family of functions called an (n.k)-perfect hash family. A family \mathcal{F} of functions $f:[n] \rightarrow[k]$ is an (n.k)-perfect hash family if for every subset $S \subseteq[n]$ of size k, there exists $f \in \mathcal{F}$ such that f assigns pairwise distinct values to the elements of S. Note that if S is the fixed object that we want to find, then such f will make S colorful. A repetition of random colorings in color-coding technique can be replaced by an (n, k)-perfect hash family with almost negligible computational overhead, due to the following theorem.
Theorem 1 (Naor, Schulman, Srinivasan 1995). For every $n, k \geq 1$, an (n, k)-perfect hash family of size $e^{k+o(k)} \cdot \log n$ can be constructed in time $e^{k+o(k)} \cdot n \log n$.

For random separation, we use a different method. An (n, k)-universal set \mathcal{U} is a family of subsets of $[n]$ such that for any $S \subseteq[n]$ of size k, all possible subsets of S appear in the projection of \mathcal{U} on S, that is, $\{S \cap A: A \in \mathcal{U}\}=2^{S}$. In our application to SUBGRAPH IsOMORPHISM on graphs with maximum degree at most d, S will correspond to the set of edges incident with a vertex of $V(\tilde{H})$, whose size is at most $2^{d k}$, and with a successful coloring we are looking for a partition of these edges into edges in \tilde{H} and the rest. Now repeated random colorings can be replaced by trying the colorings in \mathcal{U}, interpreting a set $A \in \mathcal{U}$ as blue edges. This strategy works with little overhead because of the following theorem
Theorem 2 (Naor, Schulman, Srinivasan 1995). For every $n, k \geq 1$, an (n, k)-universal set of size $2^{k+o(k)} \cdot \log n$ can be constructed in time $2^{k+o(k)} \cdot n \log n$.

[^1]
2 Dynamic programming

If a problem can be optimally solved by combining the solutions to a smaller problem, then dynamic programming approach can be used. We give two dynamic programming algorithm, one for Hamiltonian Path and another for Steiner Tree. Both runs in time $2^{n} \cdot n^{O(1)}$ and requires exponential space.

Problem Hamiltonian Path

Input: a graph G with prescribed vertices $s, t(s \neq t)$.
Task: decide if G has a Hamiltonian path from s to t.
For a graph $G=(V, E)$, and a vertex subset $K \subseteq V$, a steiner subgraph for K is a connected subgraph H of G which contains all vertices of K. Intuitively, a steiner subgraph for K is an essential structure in G that pairwise connect the vertices of K The vertices of K are called terminals. For a subgraph H of an edge-weighted graph G with weight function $\omega: E \rightarrow \mathbb{R}_{\geq 0}$, the weight of H is the sum $\sum_{e \in E(H)} \omega(e)$ over all H 's edges and will be denoted by $\omega(H)$. In this vein, we are interested in finding a steiner subgraph with minimum number of edges, or of minimum weight. With non-negative weights, a steiner subgraph of minimum edge count/weight sum can be assumed to be a tree and we call a steiner subgraph which is a tree a steiner tree. This leads to the following fundamental problem.

Problem Steiner Tree

Input: an edge-weighted graph $G=(V, E)$ with weight function $\omega: E \rightarrow \mathbb{R}_{\geq 0}$, and a set of vertices $K \subseteq V$ (terminals)

Task: find a steiner tree for K of minimum weight, if one exists.

2.1 DP for Hamiltonian Path

For all subsets $s \in S \subseteq V$ and a vertex $v \in S$, we compute whether $G[S]$ contains a Hamiltonian path from s to v. Let $P[S, v]$ be 1 if such a Hamiltonian (s, v)-path in $G[S]$ exists and it takes value 0 otherwise. The dynamic programming will compute the values of P in a bottom-up manner in the sense that $P[S, v]$ will be computed using the tabulated values of P for smaller sets. Note that G has a Hamiltonian path from s to v if and only if $P[V, v]=1$.

The base case is when $S=\{s\}$ and $v=s$, and we have $P[S, s]=1$ trivially. For sets S containing s with $|S| \geq 2$, the next recursion for $P[S, v]$ is easy to see.

$$
P[S, v]= \begin{cases}0 & \text { if } v=s \\ \bigvee_{w \in N(v) \cap S} P[S \backslash v, w] & \text { if } v \neq s\end{cases}
$$

Each computation of $P[S, v]$ requires $O(|S|)$ lookups of the table P constructed already. As there are $2^{n-1} \cdot n$ entries in the table, the algorithm takes $O\left(2^{n} \cdot n^{2}\right)$-time.

2.2 DP for Steiner Tree

We may assume that every terminal has degree 1 in the input graph G : for $v \in K$, if v is not already of degree 1 , then add a pendant vertex v^{\prime} to v and replace v in K by v^{\prime}. The weight on $v v^{\prime}$ is set to 0 . If $|K| \leq 2$, then Steiner Tree has a trivial solution either a single vertex solution (of weight zero), or a steiner tree which is a shortest path between two terminals. Therefore, we assume $|K| \geq 3$. Also G can be assumed to be connected: if K resides in more than one connected components of G, there is no steiner tree for K and report so. If this is not the case, we can take as the input graph the unique connected component of G containing the entire set K.

The algorithm starts with an observation that under the above assumptions, any steiner tree T contains a non-terminal vertex u which has degree at least three in T. Consider two subtree T_{1}, T_{2} of T, where T_{1} takes u as a leaf and T_{2} is the remaining part of T. The subtrees T_{1} and T_{2} splits the terminals into two parts, say K_{1} and K_{2}, and the respective sizes have decreased by at least one. The idea is to find a steiner tree for $K_{1} \cup u$ and $K_{2} \cup u$. But we also want that adding a vertex like u as a terminal temporarily does not have an accumulating effect.

So, we view this non-terminal vertex u as an interface vertex for connecting K_{1} and K_{2}. If K_{1} contains a single vertex, then finding a steiner tree for K_{1} becomes a shortest path problem. Otherwise, any steiner tree T_{1} form $K_{1} \cup u$ again contains a non-terminal vertex w which has 'branches out' with K_{1} : Consider T_{1} as a tree rooted at u and choose w of shortest distance to u in T_{1} with at least two children. The crucial point here is that by choosing w closest to u, we ensured that the subtree of T_{1} containing u and taking w as a leaf is a path. Note that w can be possibly identical to u. Now, w will take the role of u for the partition of K_{1}. Mind that we are blind to which non-terminal vertex will actually take the role of u or w, also blind to which partition the hypothetical w will induce on K_{1}. Therefore, we compute optimal partial solution for all possible choices of w and possible partitions.

With the above observation, we end up with the next recursion. For a terminal set $D \subseteq K$ and a non-terminal vertex $u \in V \backslash K$, let $P[D, u]$ is the minimum possible weight of a steiner tree for $D \cup u$ in G.

$$
P[D, u]=\min _{w \in V \backslash K, \emptyset \subseteq D^{\prime} \subsetneq D} \operatorname{dist}_{G}(u, w)+P\left[D^{\prime}, w\right]+P\left[D \backslash D^{\prime}, w\right]
$$

3 Inclusion-Exclusion based algorithms

3.1 Inclusion-Exclusion formula

Theorem 3 (Inclusion-Exclusion, union version). Let A_{i} for $i=1, \ldots, n$ be finite sets. Then,

$$
\left|\bigcup_{i \in[n]} A_{i}\right|=\sum_{\emptyset \neq X \subseteq[n]}(-1)^{|X|+1}\left|\bigcap_{i \in X} A_{i}\right| .
$$

Proof: Notice that an element not in $\bigcup_{i \in[n]} A_{i}$ contributes neither to any term of the righthand side, nor to the left-hand side. For an element $x \in \bigcup_{i \in[n]} A_{i}$, its contribution to the left-hand side is 1 . It remains to show that the sum of contribution of x to the right-hand side is precisely 1 . Let $Y \subseteq[n]$ be the set of indices i such that $x \in A_{i}$. Then for every $\emptyset \neq X \subseteq Y, \bigcap_{i \in X} A_{i}$ contains x. Conversely, for every $\emptyset \neq X \nsubseteq Y$ we have $x \notin \bigcap_{i \in X} A_{i}$. Therefore, x creates the following terms of the right-hand side:

$$
\begin{aligned}
\sum_{\emptyset \neq X \subseteq Y}(-1)^{|X|+1} \cdot 1 & =(-1) \sum_{\emptyset \neq X \subseteq Y}(-1)^{|X|} \\
& =-\sum_{i=1}^{|Y|} \sum_{X \subseteq Y,|X|=i}(-1)^{i} \\
& =-\sum_{i=1}^{|Y|}\binom{|Y|}{i}(-1)^{i} 1^{|Y|-i} \\
& =-\left(\sum_{i=0}^{|Y|}\binom{|Y|}{i}(-1)^{i} 1^{|Y|-i}-1\right) \\
& =1-(-1+1)^{|Y|}=1
\end{aligned}
$$

Theorem 4 (Inclusion-Exclusion, intersection version). Let A_{i} for $i=1, \ldots, n$ be sets of a finite universe U. Then,

$$
\left|\bigcap_{i \in[n]} A_{i}\right|=\sum_{X \subseteq[n]}(-1)^{|X|+1}\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right| .
$$

Proof: First, we note that for finite sets $B_{i}, i \in[n]$,

$$
\begin{equation*}
U \backslash \bigcup_{i \in[n]} B_{i}=\bigcap_{i \in[n]}\left(U \backslash B_{i}\right) \tag{1}
\end{equation*}
$$

Therefore, by Theorem 3 it holds that

$$
\begin{align*}
\left|U \backslash \bigcup_{i \in[n]} B_{i}\right| & =|U|+\sum_{\emptyset \neq X \subseteq[n]}(-1)^{|X|}\left|\bigcap_{i \in X} B_{i}\right| \\
& =\sum_{X \subseteq[n]}(-1)^{|X|}\left|\bigcap_{i \in X} B_{i}\right| . \tag{2}
\end{align*}
$$

Set $A_{i}=U \backslash B_{i}$ and combine the equations (1)-(2). Now,

$$
\begin{aligned}
\left|\bigcap_{i \in[n]} A_{i}\right| & =\left|\bigcap_{i \in[n]}\left(U \backslash B_{i}\right)\right|=\left|U \backslash \bigcup_{i \in[n]} B_{i}\right| \\
& =|U|-\sum_{\emptyset \subseteq X \subseteq[n]}(-1)^{|X|+1}\left|\bigcap_{i \in X} B_{i}\right| \\
& =\sum_{X \subseteq[n]}(-1)^{|X|}\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|,
\end{aligned}
$$

where the last equation follows from the convention of writing $U=\bigcap_{i \in \emptyset} B_{i}$.

3.2 IE-based algorithm for Hamiltonian Cycle

Using the Inclusion-exclusion formula we can compute Hamiltonian Cycle in $2^{n} \cdot n^{O(1)}$ time. In fact we can count the number of Hamiltonian cycles in the same running time.

Let $G=(V, E)$ be on n vertices v_{1}, \ldots, v_{n}, and let $v_{0}=v_{n}$. A closed walk is a sequence of vertices of G whose start and end vertices are identical, and any two consecutive vertices are adjacent in G. Notice that a vertex or an edge might appear in a walk multiple times. The length of a closed walk is the length of vertex sequence minus one. By v_{0}-walk, we mean a closed walk that begins and ends with v_{0}. To apply the (intersection version) of inclusion-exclusion formula, we define the ground set U as follows:

$$
U=\left\{\text { all } v_{0} \text {-walks of length } n\right\} .
$$

Now we can view a Hamiltonian cycle (with an orientation) as a v_{0}-walk of length n which visits every $v \in V$. Notice that each Hamiltonian cycle yields two v_{0}-walks of length n visiting every vertex v. Therefore with A_{i} defined as

$$
A_{i}=\left\{\text { all } v_{0} \text {-walks of length } n \text { visiting } v_{i}\right\}
$$

the Hamiltonian cycles, the v_{0}-walks of length n visiting all $v \in V$ to be precise, are captured by $\bigcap_{i \in[n]} A_{i}$. Its cardinality can be computed by computing $\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|$ for every $X \subseteq[n]$ instead thanks to Theorem 4.

So, what kind objects constitute $\bigcap_{i \in X}\left(U \backslash A_{i}\right)$? Observe that $I \backslash A_{i}$ are precisely the v_{0}-walks of length n which avoid v_{i}, and thus $\bigcap_{i \in X}\left(U \backslash A_{i}\right)$ are v_{0}-walks of length n which avoid all vertices corresponding to X. In other words, $\bigcap_{i \in X}\left(U \backslash A_{i}\right)$ are the set of all v_{0}-walks of length n in $G-X$ (formally $G-\left\{v_{i}: i \in X\right\}$).

Finally, the number of $\left(v_{i}, v_{j}\right)$-walks of length ℓ in a graph H can be computed in polynomial time by computing ℓ-th power of the adjacency matrix of H and reading off the (i, j)-entry of the resulting matrix. This completes the algorithm and it is straightforward to see that after 2^{n} steps all the terms of $\sum_{X \subseteq[n]}(-1)^{|X|}\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|$ have summed up. We remark that this algorithm works both for directed and undirected graphs.

3.3 IE-based algorithm for k-Coloring

To apply the intersection version of inclusion-exclusion formula, we view a k-coloring as a k-tuple of independent sets of G. Namely, we define

$$
U=\left\{\left(I_{1}, \ldots, I_{k}\right): I_{i} \text { is an independent set of } G\right\}
$$

Notice that two independent sets in a tuple may intersect and even coincide. Observe that there is a (proper) k-coloring if and only if there is k-tuple of independent sets covering all vertices of G. Therefore let

$$
A_{i}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v_{i} \in I_{1} \cup \cdots \cup I_{k}\right\}
$$

and G admits a proper k-coloring if and only if $\bigcap_{i \in[n]} A_{i} \neq \emptyset$. Due to Theorem 4, we can decide this via computing the value $\sum_{\emptyset \neq X \subset[n]}(-1)^{|X|+1}\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|$.

Again, $\bigcap_{i \in X}\left(U \backslash A_{i}\right)$ is the set of all k-tuples of independent sets avoiding the vertices in X altogether. In other words, it is the set of all k-tuples of independent sets of $G-X$. Let $i(G)$ be the number of independent sets of G and observe

$$
\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|=i(G-X)^{k}
$$

Now $i(G)$ can be computed with dynamic programming. Choose an arbitrary vertex $v \in G$ and note that

$$
i(G)=i(G-v)+i(G-N[v])
$$

where the first term in r.h.s counts the independent sets of G not containing v and the second term counts the independent sets of G containing v, thus excluding $N(v)$. This recursion indicates that $i(G[Z])$ over all subsets Z of V can be tabulated, and this can be done in time $2^{n} \cdot n^{O(1)}$.

With the above table containing values for $i(G-X)$ for all $X \subseteq[n]$, we can compute $\sum_{X \subseteq[n]}(-1)^{|X|+1}\left|\bigcap_{i \in X}\left(U \backslash A_{i}\right)\right|$ in time $2^{n} \cdot n^{O(1)}$.

[^0]: ${ }^{1}$ Mind that if you parameterize by k only, then we cannot expect to have an fpt-algorithm: when H is a clique on k vertices, it is known that deciding if G contains H as a subgraph or not is known to be W[1]-hard (you will learn this notion in the next class) parameterized by k. This means that under a widely-accepted complexity assumption that $W[1] \neq F P T$, SUBGRAPH IsOmORPhiSm is unlikely to be fixed-parameter tractable with respect to k only.

[^1]: ${ }^{2}$ We use the fact the natural log base e equals $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$.

