
Résolution exacte de problèmes NP-difficiles

Lecture 4: More algorithmic techniques

25 January, 2021 Lecturer: Eunjung Kim

1 Randomized algorithm continues

1.1 Random separation

Another useful technique for designing a randomized algorithm is a random separation tech-
nique. Like color-coding, it is useful to design an algorithm to detect a small-sized substruc-
ture in a graph.

We exemplify this technique with the problem Subgraph Isomorphism: given an input
graph G and a pattern graph H on k vertices, the task is to find a copy of H in G or
correctly decide that G does not have H as a subgraph. We take the parameter k + d,
where d is the maximum degree of G and present a randomized algorithm that runs in time
2dk+O(k log k) · nO(1) which detect H as a subgraph in G with high probability, if exists one1.

The intuitive idea is to color the edges of G in blue or red so that the edges of H are
‘isolate’ in this coloring, and thus this isolated copy of H is easy to detect. Fix a subgraph
H̃ of G which is isomorphic to H. A coloring c : V (G) → {red, blue} is successful if the
next two conditions are satisfied:

1. all edges of H̃ is colored blue, and

2. all edges of E(G) \ E(H̃) incident with a vertex of V (H̃) is colored blue.

On how many edges does a successful coloring requests a specific color? All edges incident
with a vertex of H̃ are requested to be either blue or red, depending on whether it belongs
to E(H̃) or not. As there are at most d · V (H̃) = dk such edges, a random coloring c is
successful with probability at least 2−dk.

Now assume that the current coloring c is successful. Consider the subgraph G′ of G
consisting of the blue edges. Let us call a connected component in G′ a blue component,
and let B be the set of all blue components. Now we have narrow down which part of G we
need to match H. To begin with, any blue component having more than k vertices has no
chance of being H̃ (under a successful coloring).

1Mind that if you parameterize by k only, then we cannot expect to have an fpt-algorithm: when H
is a clique on k vertices, it is known that deciding if G contains H as a subgraph or not is known to
be W[1]-hard (you will learn this notion in the next class) parameterized by k. This means that under
a widely-accepted complexity assumption that W [1] 6= FPT , Subgraph Isomorphism is unlikely to be
fixed-parameter tractable with respect to k only.

1

Let H1, . . . , Hp be the connected components of H (possibly p = 1). We make a bipartite
graph W in which one part of the vertex bipartition is H = {H1, . . . , Hp} and the other part
is B, the set of all blue components. The bipartite graph W has an edge between H ∈ H
and B ∈ B if H is isomorphic to B. As the isomorphism between H and B (on at most
k vertices each) can be tested in time k! · kO(1) = 2O(k log k), the construction of W can be
done in time 2O(k log k) · n. It remains to observe that if H̃ exists and the current color is
successful for H̃, this copy must be a disjoint union of p blue components each of which is
isomorphic to H1, . . . , Hp respectively. We can decide whether such p blue components exist
by examining whether a maximum matching on W exists saturating all vertices in H. The
latter problem is polynomial-time solvable.

To summarize, if G contains a copy of H (say H̃), then with probability at least 2−dk a
random coloring is successful for H̃. Given a successful coloring, H̃ can be correctly retrieved
from G in time 2O(k log k) · nO(1). Let us call this procedure A. The probability2 that no copy
of H is detected after 2dk repetitions of A while G contains a copy of H is at most

(1− 2−dk)2
dk

= (1− 2−dk)(−2
dk)·(−1) ≈ e−1

that is, with constant probability a copy of H is detected after 2dk runs of A. This constant
success probability can be boosted to an arbitrarily high constant probability by repetitions.

1.2 Derandomization

The randomization technique of color-coding and random separation can be derandomized.
For derandomizing color-coding, we use a family of functions called an (n.k)-perfect hash
family. A family F of functions f : [n] → [k] is an (n.k)-perfect hash family if for every
subset S ⊆ [n] of size k, there exists f ∈ F such that f assigns pairwise distinct values to
the elements of S. Note that if S is the fixed object that we want to find, then such f will
make S colorful. A repetition of random colorings in color-coding technique can be replaced
by an (n, k)-perfect hash family with almost negligible computational overhead, due to the
following theorem.

Theorem 1 (Naor, Schulman, Srinivasan 1995). For every n, k ≥ 1, an (n, k)-perfect hash
family of size ek+o(k) · log n can be constructed in time ek+o(k) · n log n.

For random separation, we use a different method. An (n, k)-universal set U is a family
of subsets of [n] such that for any S ⊆ [n] of size k, all possible subsets of S appear in the
projection of U on S, that is, {S ∩ A : A ∈ U} = 2S. In our application to Subgraph
Isomorphism on graphs with maximum degree at most d, S will correspond to the set of
edges incident with a vertex of V (H̃), whose size is at most 2dk, and with a successful coloring
we are looking for a partition of these edges into edges in H̃ and the rest. Now repeated
random colorings can be replaced by trying the colorings in U , interpreting a set A ∈ U as
blue edges. This strategy works with little overhead because of the following theorem

Theorem 2 (Naor, Schulman, Srinivasan 1995). For every n, k ≥ 1, an (n, k)-universal set
of size 2k+o(k) · log n can be constructed in time 2k+o(k) · n log n.

2We use the fact the natural log base e equals limx→0(1 + x)
1
x .

2

2 Dynamic programming

If a problem can be optimally solved by combining the solutions to a smaller problem, then
dynamic programming approach can be used. We give two dynamic programming algorithm,
one for Hamiltonian Path and another for Steiner Tree. Both runs in time 2n · nO(1)

and requires exponential space.

Problem Hamiltonian Path

Input: a graph G with prescribed vertices s, t (s 6= t).

Task: decide if G has a Hamiltonian path from s to t.

For a graph G = (V,E), and a vertex subset K ⊆ V , a steiner subgraph for K is a
connected subgraph H of G which contains all vertices of K. Intuitively, a steiner subgraph
for K is an essential structure in G that pairwise connect the vertices of K The vertices of
K are called terminals. For a subgraph H of an edge-weighted graph G with weight function
ω : E → R≥0, the weight of H is the sum

∑
e∈E(H) ω(e) over all H’s edges and will be denoted

by ω(H). In this vein, we are interested in finding a steiner subgraph with minimum number
of edges, or of minimum weight. With non-negative weights, a steiner subgraph of minimum
edge count/weight sum can be assumed to be a tree and we call a steiner subgraph which is
a tree a steiner tree. This leads to the following fundamental problem.

Problem Steiner Tree

Input: an edge-weighted graph G = (V,E) with weight function ω : E → R≥0, and a set of
vertices K ⊆ V (terminals)

Task: find a steiner tree for K of minimum weight, if one exists.

2.1 DP for Hamiltonian Path

For all subsets s ∈ S ⊆ V and a vertex v ∈ S, we compute whether G[S] contains a
Hamiltonian path from s to v. Let P [S, v] be 1 if such a Hamiltonian (s, v)-path in G[S]
exists and it takes value 0 otherwise. The dynamic programming will compute the values
of P in a bottom-up manner in the sense that P [S, v] will be computed using the tabulated
values of P for smaller sets. Note that G has a Hamiltonian path from s to v if and only if
P [V, v] = 1.

The base case is when S = {s} and v = s, and we have P [S, s] = 1 trivially. For sets S
containing s with |S| ≥ 2, the next recursion for P [S, v] is easy to see.

P [S, v] =

{
0 if v = s∨

w∈N(v)∩S P [S \ v, w] if v 6= s.

Each computation of P [S, v] requires O(|S|) lookups of the table P constructed already. As
there are 2n−1 · n entries in the table, the algorithm takes O(2n · n2)-time.

3

2.2 DP for Steiner Tree

We may assume that every terminal has degree 1 in the input graph G: for v ∈ K, if v is not
already of degree 1, then add a pendant vertex v′ to v and replace v in K by v′. The weight
on vv′ is set to 0. If |K| ≤ 2, then Steiner Tree has a trivial solution either a single vertex
solution (of weight zero), or a steiner tree which is a shortest path between two terminals.
Therefore, we assume |K| ≥ 3. Also G can be assumed to be connected: if K resides in
more than one connected components of G, there is no steiner tree for K and report so. If
this is not the case, we can take as the input graph the unique connected component of G
containing the entire set K.

The algorithm starts with an observation that under the above assumptions, any steiner
tree T contains a non-terminal vertex u which has degree at least three in T . Consider
two subtree T1, T2 of T , where T1 takes u as a leaf and T2 is the remaining part of T . The
subtrees T1 and T2 splits the terminals into two parts, say K1 and K2, and the respective
sizes have decreased by at least one. The idea is to find a steiner tree for K1 ∪u and K2 ∪u.
But we also want that adding a vertex like u as a terminal temporarily does not have an
accumulating effect.

So, we view this non-terminal vertex u as an interface vertex for connecting K1 and K2.
If K1 contains a single vertex, then finding a steiner tree for K1 becomes a shortest path
problem. Otherwise, any steiner tree T1 form K1∪u again contains a non-terminal vertex w
which has ‘branches out’ with K1: Consider T1 as a tree rooted at u and choose w of shortest
distance to u in T1 with at least two children. The crucial point here is that by choosing w
closest to u, we ensured that the subtree of T1 containing u and taking w as a leaf is a path.
Note that w can be possibly identical to u. Now, w will take the role of u for the partition
of K1. Mind that we are blind to which non-terminal vertex will actually take the role of
u or w, also blind to which partition the hypothetical w will induce on K1. Therefore, we
compute optimal partial solution for all possible choices of w and possible partitions.

With the above observation, we end up with the next recursion. For a terminal set
D ⊆ K and a non-terminal vertex u ∈ V \K, let P [D, u] is the minimum possible weight of
a steiner tree for D ∪ u in G.

P [D, u] = min
w∈V \K,∅(D′(D

distG(u,w) + P [D′, w] + P [D \D′, w]

4

3 Inclusion-Exclusion based algorithms

3.1 Inclusion-Exclusion formula

Theorem 3 (Inclusion-Exclusion, union version). Let Ai for i = 1, . . . , n be finite sets.
Then,

|
⋃
i∈[n]

Ai| =
∑

∅6=X⊆[n]

(−1)|X|+1|
⋂
i∈X

Ai|.

Proof: Notice that an element not in
⋃

i∈[n] Ai contributes neither to any term of the right-

hand side, nor to the left-hand side. For an element x ∈
⋃

i∈[n] Ai, its contribution to the
left-hand side is 1. It remains to show that the sum of contribution of x to the right-hand
side is precisely 1. Let Y ⊆ [n] be the set of indices i such that x ∈ Ai. Then for every
∅ 6= X ⊆ Y ,

⋂
i∈X Ai contains x. Conversely, for every ∅ 6= X * Y we have x /∈

⋂
i∈X Ai.

Therefore, x creates the following terms of the right-hand side:∑
∅6=X⊆Y

(−1)|X|+1 · 1 = (−1)
∑
∅6=X⊆Y

(−1)|X|

= −
|Y |∑
i=1

∑
X⊆Y,|X|=i

(−1)i

= −
|Y |∑
i=1

(
|Y |
i

)
(−1)i1|Y |−i

= −
(|Y |∑

i=0

(
|Y |
i

)
(−1)i1|Y |−i − 1

)
= 1− (−1 + 1)|Y | = 1.

Theorem 4 (Inclusion-Exclusion, intersection version). Let Ai for i = 1, . . . , n be sets of a
finite universe U . Then,

|
⋂
i∈[n]

Ai| =
∑
X⊆[n]

(−1)|X|+1|
⋂
i∈X

(U \ Ai)|.

Proof: First, we note that for finite sets Bi, i ∈ [n],

U \
⋃
i∈[n]

Bi =
⋂
i∈[n]

(U \Bi). (1)

Therefore, by Theorem 3 it holds that

|U \
⋃
i∈[n]

Bi| = |U |+
∑

∅6=X⊆[n]

(−1)|X||
⋂
i∈X

Bi|

=
∑
X⊆[n]

(−1)|X||
⋂
i∈X

Bi|. (2)

5

Set Ai = U \Bi and combine the equations (1)-(2). Now,

|
⋂
i∈[n]

Ai| = |
⋂
i∈[n]

(U \Bi)| = |U \
⋃
i∈[n]

Bi|

= |U | −
∑

∅(X⊆[n]

(−1)|X|+1|
⋂
i∈X

Bi|

=
∑
X⊆[n]

(−1)|X||
⋂
i∈X

(U \ Ai)|,

where the last equation follows from the convention of writing U =
⋂

i∈∅Bi.

3.2 IE-based algorithm for Hamiltonian Cycle

Using the Inclusion-exclusion formula we can compute Hamiltonian Cycle in 2n · nO(1)-
time. In fact we can count the number of Hamiltonian cycles in the same running time.

Let G = (V,E) be on n vertices v1, . . . , vn, and let v0 = vn. A closed walk is a sequence
of vertices of G whose start and end vertices are identical, and any two consecutive vertices
are adjacent in G. Notice that a vertex or an edge might appear in a walk multiple times.
The length of a closed walk is the length of vertex sequence minus one. By v0-walk, we
mean a closed walk that begins and ends with v0. To apply the (intersection version) of
inclusion-exclusion formula, we define the ground set U as follows:

U = {all v0-walks of length n}.

Now we can view a Hamiltonian cycle (with an orientation) as a v0-walk of length n which
visits every v ∈ V . Notice that each Hamiltonian cycle yields two v0-walks of length n
visiting every vertex v. Therefore with Ai defined as

Ai = {all v0-walks of length n visiting vi},

the Hamiltonian cycles, the v0-walks of length n visiting all v ∈ V to be precise, are captured
by
⋂

i∈[n] Ai. Its cardinality can be computed by computing |
⋂

i∈X(U \Ai)| for every X ⊆ [n]
instead thanks to Theorem 4.

So, what kind objects constitute
⋂

i∈X(U \ Ai)? Observe that I \ Ai are precisely the
v0-walks of length n which avoid vi, and thus

⋂
i∈X(U \ Ai) are v0-walks of length n which

avoid all vertices corresponding to X. In other words,
⋂

i∈X(U \Ai) are the set of all v0-walks
of length n in G−X (formally G− {vi : i ∈ X}).

Finally, the number of (vi, vj)-walks of length ` in a graph H can be computed in poly-
nomial time by computing `-th power of the adjacency matrix of H and reading off the
(i, j)-entry of the resulting matrix. This completes the algorithm and it is straightforward
to see that after 2n steps all the terms of

∑
X⊆[n](−1)|X||

⋂
i∈X(U \Ai)| have summed up. We

remark that this algorithm works both for directed and undirected graphs.

6

3.3 IE-based algorithm for k-Coloring

To apply the intersection version of inclusion-exclusion formula, we view a k-coloring as a
k-tuple of independent sets of G. Namely, we define

U = {(I1, . . . , Ik) : Ii is an independent set of G}.

Notice that two independent sets in a tuple may intersect and even coincide. Observe that
there is a (proper) k-coloring if and only if there is k-tuple of independent sets covering all
vertices of G. Therefore let

Ai = {(I1, . . . , Ik) ∈ U : vi ∈ I1 ∪ · · · ∪ Ik},

and G admits a proper k-coloring if and only if
⋂

i∈[n] Ai 6= ∅. Due to Theorem 4, we can

decide this via computing the value
∑
∅6=X⊂[n](−1)|X|+1|

⋂
i∈X(U \ Ai)|.

Again,
⋂

i∈X(U \Ai) is the set of all k-tuples of independent sets avoiding the vertices in
X altogether. In other words, it is the set of all k-tuples of independent sets of G−X. Let
i(G) be the number of independent sets of G and observe

|
⋂
i∈X

(U \ Ai)| = i(G−X)k.

Now i(G) can be computed with dynamic programming. Choose an arbitrary vertex
v ∈ G and note that

i(G) = i(G− v) + i(G−N [v])

where the first term in r.h.s counts the independent sets of G not containing v and the second
term counts the independent sets of G containing v, thus excluding N(v). This recursion
indicates that i(G[Z]) over all subsets Z of V can be tabulated, and this can be done in time
2n · nO(1).

With the above table containing values for i(G − X) for all X ⊆ [n], we can compute∑
X⊆[n](−1)|X|+1|

⋂
i∈X(U \ Ai)| in time 2n · nO(1).

7

