Résolution exacte de problemes NP-difficiles
Lecture 4: More algorithmic techniques

25 January, 2021 Lecturer: Eunjung Kim

1 Randomized algorithm continues

1.1 Random separation

Another useful technique for designing a randomized algorithm is a random separation tech-
nique. Like color-coding, it is useful to design an algorithm to detect a small-sized substruc-
ture in a graph.

We exemplify this technique with the problem SUBGRAPH ISOMORPHISM: given an input
graph G and a pattern graph H on k vertices, the task is to find a copy of H in G or
correctly decide that G does not have H as a subgraph. We take the parameter k + d,
where d is the maximum degree of G and present a randomized algorithm that runs in time
2dk+O(klogk) .)y O) wwhich detect H as a subgraph in G with high probability, if exists one'.

The intuitive idea is to color the edges of GG in blue or red so that the edges of H are
‘isolate’ in this coloring, and thus this isolated copy of H is easy to detect. Fix a subgraph
H of G which is isomorphic to H. A coloring ¢ : V(G) — {red, blue} is successful if the
next two conditions are satisfied:

1. all edges of H is colored blue, and
2. all edges of E(G) \ E(H) incident with a vertex of V (H) is colored blue.

On how many edges does a successful coloring requests a specific color? All edges incident
with a vertex of H are requested to be either blue or red, depending on whether it belongs
to E(H) or not. As there are at most d - V(H) = dk such edges, a random coloring ¢ is
successful with probability at least 27,

Now assume that the current coloring ¢ is successful. Consider the subgraph G’ of G
consisting of the blue edges. Let us call a connected component in G’ a blue component,
and let B be the set of all blue components. Now we have narrow down which part of G we
need to match H. To begin with, any blue component having more than k£ vertices has no

chance of being H (under a successful coloring).

'Mind that if you parameterize by k only, then we cannot expect to have an fpt-algorithm: when H
is a clique on k vertices, it is known that deciding if G contains H as a subgraph or not is known to
be W([1]-hard (you will learn this notion in the next class) parameterized by k. This means that under
a widely-accepted complexity assumption that W[1] # FPT, SUBGRAPH ISOMORPHISM is unlikely to be
fixed-parameter tractable with respect to k only.

Let Hy, ..., H, be the connected components of H (possibly p = 1). We make a bipartite
graph W in which one part of the vertex bipartition is H = {Hy, ..., H,} and the other part
is B, the set of all blue components. The bipartite graph W has an edge between H € H
and B € B if H is isomorphic to B. As the isomorphism between H and B (on at most
k vertices each) can be tested in time k! - k91 = 20(k108k) the construction of W can be
done in time 20*18%) .y Tt remains to observe that if H exists and the current color is
successful for H, this copy must be a disjoint union of p blue components each of which is
isomorphic to Hy, ..., H, respectively. We can decide whether such p blue components exist
by examining whether a maximum matching on W exists saturating all vertices in H. The
latter problem is polynomial-time solvable.

To summarize, if G contains a copy of H (say H), then with probability at least 2% a
random coloring is successful for H. Given a successful coloring, H can be correctly retrieved
from G in time 20%108k) . nOM) Tet us call this procedure A. The probability? that no copy
of H is detected after 2% repetitions of A while G contains a copy of H is at most

(1 _ 2—dk>2dk — (1 o 2—dk)(—2dk)~(—1) ~ 6_1

that is, with constant probability a copy of H is detected after 2% runs of A. This constant

success probability can be boosted to an arbitrarily high constant probability by repetitions.

1.2 Derandomization

The randomization technique of color-coding and random separation can be derandomized.
For derandomizing color-coding, we use a family of functions called an (n.k)-perfect hash
family. A family F of functions f : [n] — [k] is an (n.k)-perfect hash family if for every
subset S C [n] of size k, there exists f € F such that f assigns pairwise distinct values to
the elements of S. Note that if S is the fixed object that we want to find, then such f will
make S colorful. A repetition of random colorings in color-coding technique can be replaced
by an (n, k)-perfect hash family with almost negligible computational overhead, due to the
following theorem.

Theorem 1 (Naor, Schulman, Srinivasan 1995). For every n,k > 1, an (n, k)-perfect hash
family of size e¥t°%) .logn can be constructed in time e*+t°*) . nlogn.

For random separation, we use a different method. An (n, k)-universal set U is a family
of subsets of [n] such that for any S C [n] of size k, all possible subsets of S appear in the
projection of U on S, that is, {SN A : A € U} = 2°. In our application to SUBGRAPH
ISOMORPHISM on graphs with maximum degree at most d, S will correspond to the set of
edges incident with a vertex of V(H), whose size is at most 2%, and with a successful coloring
we are looking for a partition of these edges into edges in H and the rest. Now repeated
random colorings can be replaced by trying the colorings in U, interpreting a set A € U as
blue edges. This strategy works with little overhead because of the following theorem

Theorem 2 (Naor, Schulman, Srinivasan 1995). For every n,k > 1, an (n, k)-universal set
of size 2819 Llogn can be constructed in time 28195 . nlogn.

1
T

2We use the fact the natural log base e equals lim, (1 +x)=.

2 Dynamic programming

If a problem can be optimally solved by combining the solutions to a smaller problem, then
dynamic programming approach can be used. We give two dynamic programming algorithm,
one for HAMILTONIAN PATH and another for STEINER TREE. Both runs in time 2" - n®)
and requires exponential space.

Problem HAMILTONIAN PATH
Input: a graph G with prescribed vertices s,t (s # t).
Task: decide if G has a Hamiltonian path from s to t.

For a graph G = (V, E), and a vertex subset K C V', a steiner subgraph for K is a
connected subgraph H of G which contains all vertices of K. Intuitively, a steiner subgraph
for K is an essential structure in GG that pairwise connect the vertices of K The vertices of
K are called terminals. For a subgraph H of an edge-weighted graph G with weight function
w: E — Ry, the weight of H is the sum ZeeE(H) w(e) over all H’s edges and will be denoted
by w(H). In this vein, we are interested in finding a steiner subgraph with minimum number
of edges, or of minimum weight. With non-negative weights, a steiner subgraph of minimum
edge count /weight sum can be assumed to be a tree and we call a steiner subgraph which is
a tree a steiner tree. This leads to the following fundamental problem.

Problem STEINER TREE

Input: an edge-weighted graph G = (V, E') with weight function w : E' — R, and a set of
vertices K C V (terminals)

Task: find a steiner tree for K of minimum weight, if one exists.

2.1 DP for Hamiltonian Path

For all subsets s € S C V and a vertex v € S, we compute whether G[S] contains a
Hamiltonian path from s to v. Let P[S,v] be 1 if such a Hamiltonian (s, v)-path in G[S]
exists and it takes value 0 otherwise. The dynamic programming will compute the values
of P in a bottom-up manner in the sense that P[S,v] will be computed using the tabulated
values of P for smaller sets. Note that G has a Hamiltonian path from s to v if and only if
P[V,v] = 1.

The base case is when S = {s} and v = s, and we have P[S,s] = 1 trivially. For sets S
containing s with |S| > 2, the next recursion for P[S,v] is easy to see.

P[5, v] 0 ifv=s
, U] =)
vweN(v)mS P[S\v,w] ifv#s.

Each computation of P[S,v] requires O(|S|) lookups of the table P constructed already. As
there are 2"~! - n entries in the table, the algorithm takes O(2" - n?)-time.

3

2.2 DP for Steiner Tree

We may assume that every terminal has degree 1 in the input graph G: for v € K, if v is not
already of degree 1, then add a pendant vertex v’ to v and replace v in K by v'. The weight
on v’ is set to 0. If | K| < 2, then STEINER TREE has a trivial solution either a single vertex
solution (of weight zero), or a steiner tree which is a shortest path between two terminals.
Therefore, we assume |K| > 3. Also G can be assumed to be connected: if K resides in
more than one connected components of GG, there is no steiner tree for K and report so. If
this is not the case, we can take as the input graph the unique connected component of G
containing the entire set K.

The algorithm starts with an observation that under the above assumptions, any steiner
tree T' contains a non-terminal vertex u which has degree at least three in 7. Consider
two subtree T, T of T', where T} takes u as a leaf and 75 is the remaining part of 7. The
subtrees T} and 75 splits the terminals into two parts, say K; and K5, and the respective
sizes have decreased by at least one. The idea is to find a steiner tree for K; Uu and K5 Uw.
But we also want that adding a vertex like v as a terminal temporarily does not have an
accumulating effect.

So, we view this non-terminal vertex u as an interface vertex for connecting K, and K.
If K, contains a single vertex, then finding a steiner tree for K; becomes a shortest path
problem. Otherwise, any steiner tree 77 form K; Uu again contains a non-terminal vertex w
which has ‘branches out’ with K;: Consider 77 as a tree rooted at u and choose w of shortest
distance to u in T} with at least two children. The crucial point here is that by choosing w
closest to u, we ensured that the subtree of T} containing u and taking w as a leaf is a path.
Note that w can be possibly identical to u. Now, w will take the role of u for the partition
of K;. Mind that we are blind to which non-terminal vertex will actually take the role of
u or w, also blind to which partition the hypothetical w will induce on K;. Therefore, we
compute optimal partial solution for all possible choices of w and possible partitions.

With the above observation, we end up with the next recursion. For a terminal set
D C K and a non-terminal vertex u € V' \ K, let P[D,u] is the minimum possible weight of
a steiner tree for D Uu in G.

P[D,u] = min distg(u, w) + P[D',w] + P[D\ D', w]

weV\K,§CD'CD

3 Inclusion-Exclusion based algorithms

3.1 Inclusion-Exclusion formula

Theorem 3 (Inclusion-Exclusion, union version). Let A; for i = 1,...,n be finite sets.
Then,

JAal= > R Al

i€[n] 0#XC[n] ieX

Proof: Notice that an element not in Uie[n} A; contributes neither to any term of the right-
hand side, nor to the left-hand side. For an element x € Uie[n] A;, its contribution to the
left-hand side is 1. It remains to show that the sum of contribution of z to the right-hand
side is precisely 1. Let Y C [n] be the set of indices ¢ such that z € A;. Then for every
0 #X CY, Niex Ai contains z. Conversely, for every) # X € Y we have ¢ (,cy A;.
Therefore, x creates the following terms of the right-hand side:

S D= (1) Y (-

0#AXCY P#XCY
Y]
=X >
i=1 XCV,|X|=i
Y]

Y) .
—_ Z (‘ ‘ ‘) (_1)11|Y|—’L
i1 \ ¢
[Y]
_ Y] i Y]~
__(Z(RRIESIR —1)
=0
=1—(—1+D¥ =1
O
Theorem 4 (Inclusion-Exclusion, intersection version). Let A; for i =1,...,n be sets of a
finite universe U. Then,
) Al = D (DR W\ Al
i€[n] XCJn] ieX

Proof: First, we note that for finite sets B;, i € [n],

U\UBi:ﬂ(U\Bi)~ (1)
1€[n] i€[n]
Therefore, by Theorem 3 it holds that

U\ U Bl = [U] + Z (—1)‘X||ﬂ B

i€[n] 04X Cn) ieX

= > (=™ Bil. (2)
XC)

1€eX

Set A; = U \ B; and combine the equations (1)-(2). Now,

I Aal=1W\B)=U\ | Bl

i€[n] i€n] i€[n]
=[Ul= > ()M By
PCXCln] eX
S G IR ICAWHI
XCln] ieX
where the last equation follows from the convention of writing U = (1,; Bi O
3.2 IE-based algorithm for Hamiltonian Cycle
o1)_

Using the Inclusion-exclusion formula we can compute HAMILTONIAN CYCLE in 2" - n
time. In fact we can count the number of Hamiltonian cycles in the same running time.

Let G = (V, E) be on n vertices vy, ...,v,, and let vg = v,. A closed walk is a sequence
of vertices of G whose start and end vertices are identical, and any two consecutive vertices
are adjacent in (G. Notice that a vertex or an edge might appear in a walk multiple times.
The length of a closed walk is the length of vertex sequence minus one. By wvg-walk, we
mean a closed walk that begins and ends with vg. To apply the (intersection version) of
inclusion-exclusion formula, we define the ground set U as follows:

U = {all vp-walks of length n}.

Now we can view a Hamiltonian cycle (with an orientation) as a vgp-walk of length n which
visits every v € V. Notice that each Hamiltonian cycle yields two wvg-walks of length n
visiting every vertex v. Therefore with A; defined as

A; = {all vp-walks of length n visiting v;},

the Hamiltonian cycles, the vg-walks of length n visiting all v € V' to be precise, are captured
by (Ve[Ai- Its cardinality can be computed by computing |(;cx (U \ 4;)| for every X C [n]
instead thanks to Theorem 4.

So, what kind objects constitute (o (U \ A;)? Observe that I \ A; are precisely the
vo-walks of length n which avoid v;, and thus [, (U \ 4;) are vo-walks of length n which
avoid all vertices corresponding to X. In other words, [,y (U \ 4;) are the set of all vy-walks
of length n in G — X (formally G — {v; : i € X}).

Finally, the number of (v;, v;)-walks of length ¢ in a graph H can be computed in poly-
nomial time by computing ¢-th power of the adjacency matrix of H and reading off the
(1, 7)-entry of the resulting matrix. This completes the algorithm and it is straightforward
to see that after 2" steps all the terms of Z)@[n}(—l)'x| Nicx (U \ 4;)| have summed up. We
remark that this algorithm works both for directed and undirected graphs.

3.3 IE-based algorithm for k-Coloring

To apply the intersection version of inclusion-exclusion formula, we view a k-coloring as a
k-tuple of independent sets of G. Namely, we define

U={(l,...,1I}) : I; is an independent set of G}.

Notice that two independent sets in a tuple may intersect and even coincide. Observe that
there is a (proper) k-coloring if and only if there is k-tuple of independent sets covering all
vertices of GG. Therefore let

A ={(L,....Iy) €eU:v; e [U---UI},

and G admits a proper k-coloring if and only if ﬂie[n] A; # (. Due to Theorem 4, we can
decide this via computing the value 5y, v (=1, (U A4))].

Again, ;o (U \ A;) is the set of all k-tuples of independent sets avoiding the vertices in
X altogether. In other words, it is the set of all k-tuples of independent sets of G — X. Let
i(G) be the number of independent sets of G and observe

U\ A)] =i(G— X).

€eX

Now i(G) can be computed with dynamic programming. Choose an arbitrary vertex
v € G and note that
i(G) =i(G —v) +i(G — N[v])
where the first term in r.h.s counts the independent sets of G not containing v and the second

term counts the independent sets of G containing v, thus excluding N(v). This recursion

indicates that i(G[Z]) over all subsets Z of V' can be tabulated, and this can be done in time
on . 00,

With the above table containing values for (G — X) for all X C [n], we can compute
ngn](—l)m“\ﬂiex(U \ A;)| in time 2" - n°M),

